3D Digitization of Rock Falls for Rock Fall Analysis

Michael Salisbury & Yoojoong Choi

Branch A
Geotechnical Design South 1

Steps for Rockfall Mitigation

- Obtain Slope Geometry and Geological Mapping
- 2. Perform Rockfall Computer Simulation
 - Projectile
 - Probability
 - Energy
- 3. Design Rockfall Mitigation
 - Rockfall Fences
 - Ditch

Limitation of Computer Simulation

- Computer simulations have not been calibrated against actual data – actual rockfall
- Fudge factors have been used in simulation
- Generally provides liberal results
 - Recommendations based on Computer Simulation are often under designed

Research Objectives

- Experiment and develop a rockfall testing protocol and data processing procedure that can
 - Provide reliable data set to be used for site specific model validation
 - Be easily implemented by others
 - Be cost-effective
 - Allow further development and improvement by others

Rockfall Testing Protocol

- Mark reference points
- Survey slope geometry, reference points and camera locations
- Place at least two synchronized camcorders
- Roll rocks off the slopes
- Measure weight, size of rocks

Data Processing Procedure

- Synchronize video files
- Calibrate
- Direct Linear Transformation (DLT) method

Rockfall Test on SR 39

- Test Performed between 10/05/2009 and 10/09/2009
- Four Locations
 - Total Number of Rockfalls:
- Crews
 - Survey Crew from District 7 & HQ
 - Kevin Akin
 - Maintenance Crew from District 7
 - CT Video Team from District 7
 - Steve Devorkin
 - Geotechnical Services
 - John Duffy, Bill Webster, Hung Po Yang, Seungwoon Han, David Jang, Michael Salisbury

General Rockfall Concepts

- Hazards from rocks falling from slopes adjacent to roadways
- Caused by gravity, assisted by other mechanisms
- On slopes 33° or steeper
- Evaluation is based on:
 - Maximum Energy Level (M.E.L.)
 - Climate ("Water")
 - History ("local maintenance")
 - Risk (decision site distance, speed limit, roadway width, etc.)

Test Sites

SR-39

- Narrow two-lane roadway
- located in steep mountainous terrain
- Traverses the west-facing slope of Mt. Islip
- Natural slopes vary from 20° to 40° from horizontal
- Elevations vary from 5600 ft amsl at the south end of the project to 5900 ft at the north end of the project

San Gabriel Mountain Range

- Characterized by deep, v-shaped valleys
- Steep ridges and peaks
- Uplifting at a rate of 3 millimeters per year
- Natural soil cover is very thin along ridges and peaks
- Valleys have thicker soil cover, dominated by boulders & coarse sedimentation from erosion of canyon slopes; may have stream channels
- Sparsely forested; intense precipitation (~ 30 in/yr in the project area)
- Severe freeze-thaw conditions with heavy natural erosion

Geology

Fine-grained Granodiorite:

- Moderately hard
- •Intensely fractured
- Moderately weathered

Gray Quartz Diorite:

- •Hard
- •Slightly fractured
- •Slightly weathered

Covered by thin, discontinuous colluvium

Location 1 (Angle A)

Quartz veins in Gray Quartz Diorite:

- •Hard
- Moderately fractured
- •Weathered

Maintenance characterized location as:

- Many rockfalls
- •Some were too large to move by truck (~ 6 feet largest diameter)

Slope length ~174 feet

Slope angle ~53°

Location 1 (Angle B)

RHRS score = 408

Proposed Mitigation:

- •Cable Drapery
- •Standard Barrier
- •Hybrid Barrier

More than one proposed mitigation involves a barrier. The geometry of the slope and roadway provide a high score. The risk to motorist in each rockfall event is likely to be very severe.

Location 2 (Angle A)

Fine-grained Granodiorite:

- moderately fractured to intensely fractured
- •hard
- weathered

Maintenance characterized this location as:

- Avalanches in chutes
- Many rockfalls

Slope Length = 140 feet

Slope Angle ~ 55°

Location 2 (Angle B)

RHRS Score = 308

Proposed mitigations:

- •Hybrid
- •Barrier
- Drapery
- Anchored Mesh

Considered a priority because a standard barrier would potentially mitigate rockfall hazard

Location 3 (Angle A)

Gray quartz diorite and finegrained Granodiorite:

- •Hard to moderately hard
- •Intensely fractured
- Weathered

Maintenance characterized this location as:

- •Rockfalls
- Rockslides
- Avalanches in chutes
- Many falls

Slope length ~141 feet

Slope angle ~ 52°

Location 3 (Angle B)

RHRS score = 421

Proposed Mitigation:

- •Hybrid
- Drapery
- Anchored Mesh
- •Barrier

Considered a priority because of rockfall history and barrier is a proposed mitigation.
Geology and Structure of the slope is different from previous Location 1 & 2.

Location 4 (Angle A)

Fine-grained Granodiorite:

- •Hard to very hard
- Moderately fractured
- •Slightly weathered

Maintenance characterized this location as:

- Active rockfall
- •Clean ditch frequently

Slope length ~ 143 feet

Slope angle ~ 45°

Location 4 (Angle B)

RHRS score = 437

Proposed Mitigation:

- •Cable Drapery
- Anchored Mesh
- •Barrier

This location is a priority due to the high score and maintenance history of persistent rockfall. This slope has similar geology to Location 2 however it has more soil cover.

Rockfall Tests

- Tasks for Each Location/Rockfall
 - Mark Reference Points
 - Survey and LIDAR
 - Roll Rock
 - Record Video
 - Measure (Weight of Rocks and Distance from Edge of Slope)
 - Load cell and rock net
 - Clean-up

Collected Information

- Survey Data
 - ASCII format data
 - Slope geometry
 - Reference points
 - Camera locations
 - Needs to be visualized
- Video records
 - VOB format
 - Cannot be played in normal CT computers
 - Need to be edited and converted into AVI format

Outcome

3-D CAD from Analysis

Trajectory

- A cross section of rock trajectory from x,y,z positions can provide:
 - Bounce height (i.e. will barriers work)
 - Energy toward impact
 - Calibrate software
 - Determine parameters for simulation
 - Evaluate how aggressive our simulations may be.

Trajectory and Energy

- Trajectory is determined from frame to frame by:
 - o Distance:

$$x = \sqrt{\Delta Northing^2 + \Delta Easting^2 + \Delta elevation^2}$$

- The elevation is plotted against distance to make a profile
- Energy is determined by:
 - Time = 30/1001 seconds
 - Speed = Distance/time
 - Energy = $\frac{1}{2}$ mass x speed^2

Trajectory Profile and Energy Location 2 Rock 2

Energy Analysis

$$\frac{\sum x_{frame/frame}}{\sum \Delta frame * \frac{30}{1001}} = kinetie\ energy\ from\ frame\ A\ to\ frame\ B$$

$$\frac{\sqrt{\Delta N_{A to B}^2 + \Delta E_{A to B}^2 + \Delta e le v_{A to B}^2}}{\sum \Delta f rame * \frac{30}{1001}} = \bar{k}$$

20 frame average

Frame to Frame Energy

Field Data compared to Video Rock L2R02

	Based on isurement		Results Based on Video			
PE (kj)	Ave. K (kj)	PE (kj)	Ave. K (kj)			
			total trajectory	last 5 frames	last 10 frames	last 20 frames
14.6	1.2	6.49	5.46	4.79	4.67	4.42

Results

- For location 2 a proposed fence might be placed at the redline
- If other rocks miss this point, a barrier may not be useful here
- Redeveloping a catchment may not be feasible
- Drapery could be a better alternative

Center of Mass

$$x = \sqrt{\Delta Northing^2 + \Delta Easting^2 + \Delta elevation^2}$$

$$\frac{x}{t} = v$$

$$k = \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2$$

Center of Mass

	G	Н	
/sec	x in meters	v: average speed in m/sec	kine
	0	#DIV/0!	
188002	0.47764136	13.85159943	
382587	0.320237866	9.286898124	
205492	0.49735529	14.4233034	
141214	0.355506235	10.30968082	
340844	0.464855824	13.48081889	
163786	0.402069435	11.66001362	
182889	0.44222096	12.82440785	
588041	0.54702015	15.86358435	
553302	0.548813768	15.91559927	
708684	0.411554485	11.93508007	
568017	0.558905245	16.20825211	
796447	0.502478192	14.57186757	
545919	0.486066233	14.09592076	
)88414	0.623693155	18.08710149	
335888	0.467537857	13.55859787	
300007	0.557815532	16.17665042	
724445	0.742632004	21.53632811	
)13229	0.459315973	13.32016322	
L57354	0.606568538	17.59048761	
399643	0.567548073	16.45889411	
366981	0.533018157	15.45752656	
L14052	0.336132815	9.747851629	
729652	0.634586206	18.40299998	
565/121	0.378/1318/13	10 97/1522/12	

$$\frac{0.4572^m}{0.02997^{sec}} = 15.26^{m/sec} \rightarrow \frac{1}{2}45.77 \times 15.26^2 = 5.392^{kj}$$

$$\frac{0.1524^m}{0.02997^{sec}} = 5.09^{m/sec} \rightarrow \frac{1}{2}45.77 \times 5.09^2 = 0.592^{kj}$$

Conclusions

- Trajectory Profile w/o Energy:
 - We can visualize effectiveness of barriers
 - Determine barrier height
- Trajectory Profile w/ Energy:
 - Provides a conservative estimation of energy